

The Wolfson Centre for Bulk Solids Handling Technology

Between Ship and Quay: Ship Unloading technologies

Choice of Equipment



# Continuous Ship Unloader versus Crane, Grab and Hopper

#### CSU

- Limited range of bulk solids
- Specific to bulk density and flow properties
- Higher rates
  - At top end
  - For given machine size
- Less dependent on operator skill

#### Grab Crane and hopper

- Use for both bulk and unit load
- Range of bulk solids
- More spillage
- Lowest product degradation
- Easy to cope with wide range of bulk densities

#### Grab Cranes

- All should be "level luffing"!
- Crane type and size
- Grab size
- Cycle time
- Control systems (semi-automation)
- Hoppers
- Dust control

#### Gantry crane



- Heavy lift
- Fast cycle typ. under 2 min

- High capacity
- eg 65 te, 2500 tph
- Long reach



- Fast cycle, heavy lift
- Even 2 trolleys
- High rate
- Few parts move during cycle – trolley and grab
- Low wear, low maintenance cost per tonne
- Hopper integrated
- Reach for largest ships (Valemax 380,000DWT 65m beam)
- Lends itself well to semiautomation (common for container handling)

#### Gantry cranes

- Bigger investment
- More space and weight
- No slewing function
  - Must travel to move along hold
  - Not convenient in small holds, esp. during clean-up
- Less flexible hopper normally integrated
  - Cannot be easily converted for unit loads

# Level luffing cranes

- "Horse head" versus
- Single boom ("Toplis" rig)

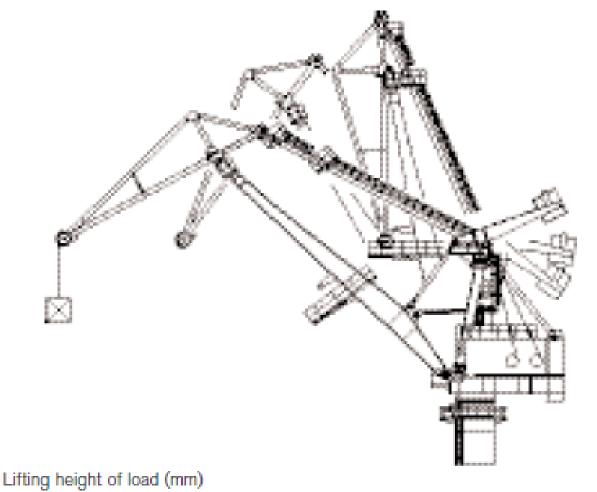


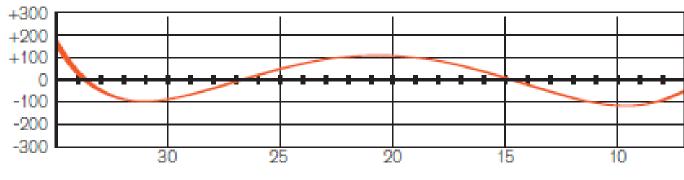
### Single-Jib Level-Luffing Crane ("Toplis" gear)

- Invented 1914 by Claude Toplis at Stothert & Pitt
- Level luffing by rope arrangement
- Luffing by rope or crank
- Less costly
- Lower weight
- More maintenance
- Not so well balanced
  - More power required due to lifting of boom
- Long free-swinging length









#### Articulated Jib ("Horse-head") level luffing crane

1.0.

Articulated Jib level luffing crane

Originated by Babcock and Wilcox in 1930's





Outreach (mm)

- Short free-swinging length less affected by wind and sway
- Accurate and fast operation, reduced spillage
- Low power usage (moving components balanced and load not lifted during luffing)
- Mechanical luffing drive (minimal maintenance)
- Minimum wear on cables (only move during lifting and lowering)
- Lends itself to automation



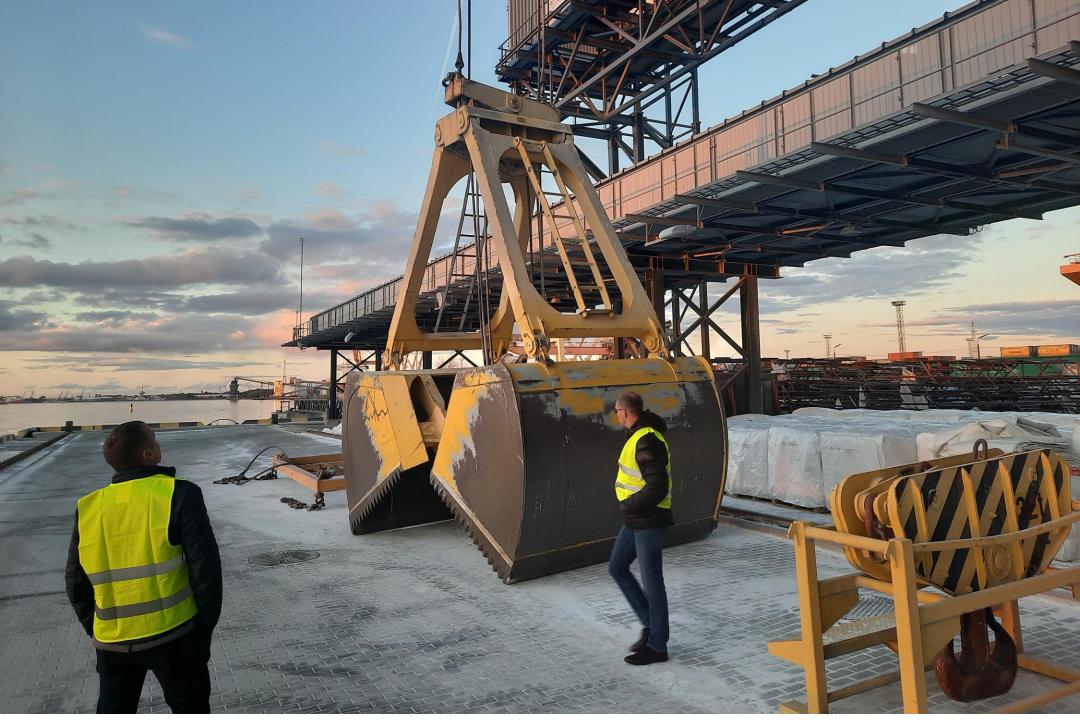
#### Level Luffing Cranes

- Popular up to 500-600 tph with grab
- Larger are used
- Hopper required
  - Free standing?
  - "Kangaroo"?
- Flexibility

# Hydraulic grab cranes

- Useful for small cargo flows
- 100-200 tph +/-
- Mobile or fixed
- Low cost
- Limited reach
- Readily tradeable
- Uses electrohydraulic grab




#### Clam-Shell Grabs

# For "Class 1" and Class 2" commodities





- Two-Rope or Electro-Hydraulic
- Volume to match crane capacity to bulk solids density
- Different grab size for different commodities!
  - Bulk density change
- Sealing efficiency dribbling
- Cannot dig into "Class 3" commodities









Reducing dust emission from grabs

- Pyramidal covers over open tops
  - Reduce roll-off of excess bulk solid
  - Reduce wind lift-off of dust







### Orange-Peel Grabs



- Two-Rope or Electro-Hydraulic
- Can dig into materials that a clamshell grab cannot enter
- Especially good for "Class 3" (extreme shape) commodities
- Scrap metal, biomass, wastes
- No good for "Class 1" (free flowing) commodities – will dribble excessively





## Grab weight considerations

- Crane lift limit = weight of grab + weight of grab contents
- If the grab weighs less, then its contents can be greater within a given crane lift capacity;
- BUT: this is only achieved IF the grab volume is increased in the right proportion
- More important to match the grab volume and crane weight limit to the commodity bulk density

#### But also beware:

- Too light a grab cannot dig into a caked or poorly flowing commodity
- Especially class 3 materials (scrap metal, raw biomass, reclaimed wood, other waste materials . . .)

# Free-standing crane discharge hopper

- Size
- Space
- Weight
- Dust
- Grab positioning
  - Use of free-standing hopper requires slewing in each crane cycle
  - Increases cycle time





Controlling dust at grab discharge

- •Containment and shielding against wind
- •Grab lowered inside hopper before opening
  - •The deeper, the better the containment (less extraction needed)
- •Smallest workable size around grab
- •Extraction and filtering of displaced air

"Kangaroo" crane

- In-built hopper attached to portal
- Moves with crane
- Eliminates need for slewing each cycle
- More efficient when traversing
- Universal with gantry crane, optional for levelluffing



#### Crane Semi-Automation Systems

- Much R&D on full positioning systems for gantry container cranes
  - Not usually on grabs
  - Bulk is small beer by comparison with boxes!
- Part automation available for gantry grab cranes
  - Unknown (?) on other crane types
- Operator controls grab digging operation
- Computer takes over for "return to base" to empty grab
- Many limitations due to unpredictable factors
  - Flex in crane structure
  - Wind

- Flexible
  - Different bulk cargoes
  - Unit loads
- Gentle to cargo
- Cycle time and unloading rate varies
  - With reach and depth through unloading operation
  - With operator skill and fatigue
- Spillage and dust are issues
- •Large size and weight relative to throughput compared to CSU

Grab Cranes summary Fixed (inc. rail mounted) versus mobile harbour cranes



### Mobile versus fixed cranes

#### Fixed / rail mounted

- Heavier
- Balance more optimised
- Faster cycle
- Lower maintenance & "cost of ownership"

Mobile harbour crane (not construction-type crane)

- Flexibility for redeployment elsewhere
- Lighter weight
- Many efficiency and safety features compromised to achieve mobility!

#### Compromises with mobile cranes

- Invariably single boom
  - Should feature Toplis reeving (for level luffing)
  - Long free-swinging length, much sway and wind effect
  - Normally no moving counter-weight (to save weight)
    - Not so well balanced more load cycling on quayside
    - Inherently more susceptible to overturning
- Time-consuming to travel between holds
- Does not incorporate a kangaroo hopper
- More hydraulic and/or rope drives
  - Higher wear and tear
  - Increased cost of ownership
- Often cabin is less well positioned (poorer view)

Mobile versus rail mounted cranes cont.

- •To be cost effective, the mobile crane must use its mobility to benefit the business
- •A mobile crane used in one place for a long period (years) is unlikely to be an economical alternative to a rail mounted portal crane!

#### Continuous Ship Unloaders

- •Screw
- Bucket Elevator
- Bucket Wheel
- Blanket Belt
- Pneumatic



iwertell

15.20

discourse in such

- Good for dusty cargos containment
- Throughput medium to moderately high – 800 to 2400tph depending on density
- Low to moderate product degradation
- Free flowing cargos ok
- Moderate energy consumption (~60kW per 100tph)

#### Screw CSU

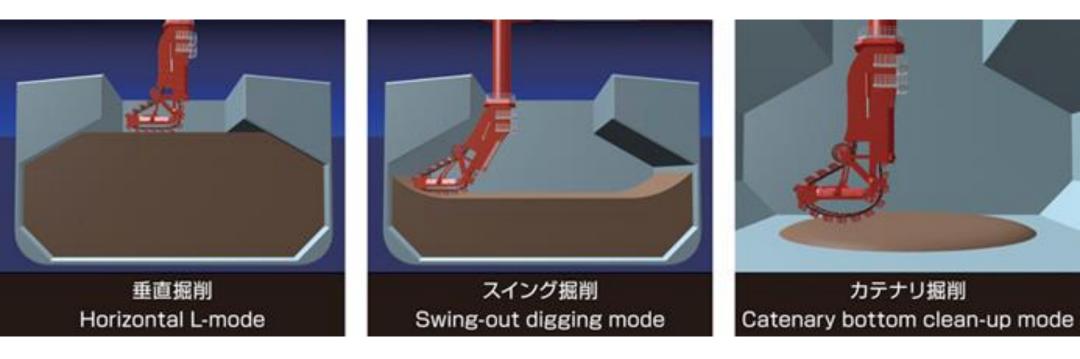
- Not good with tramp material
- Loses effectiveness with highly cohesive cargoes

#### Bucket wheel CSUs

化化 按键

- Autom

# Bucket wheel CSU


- High rates 2500 tph and more
- Good for cohesive cargoes
- Low to moderate product degradation

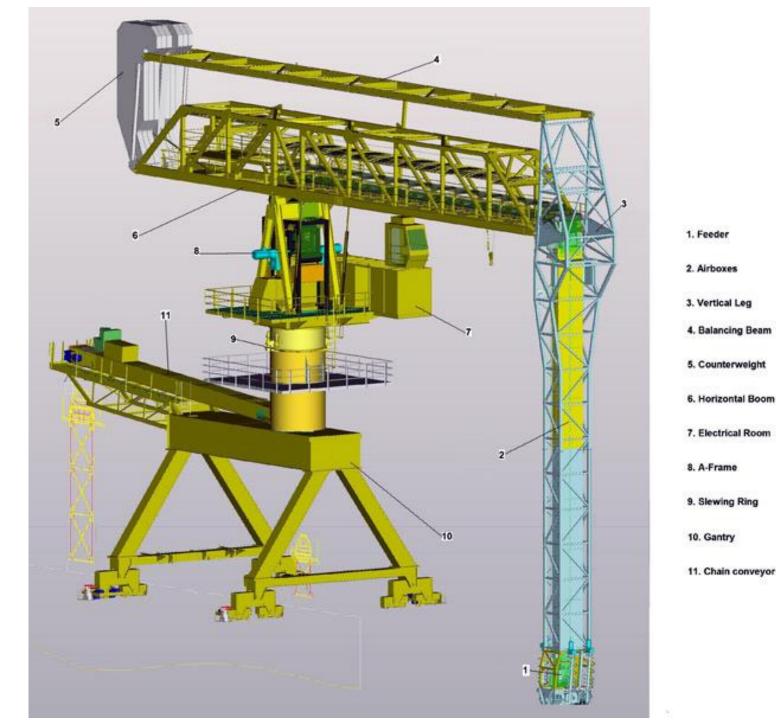
- Large and heavy
- Dust containment not so good

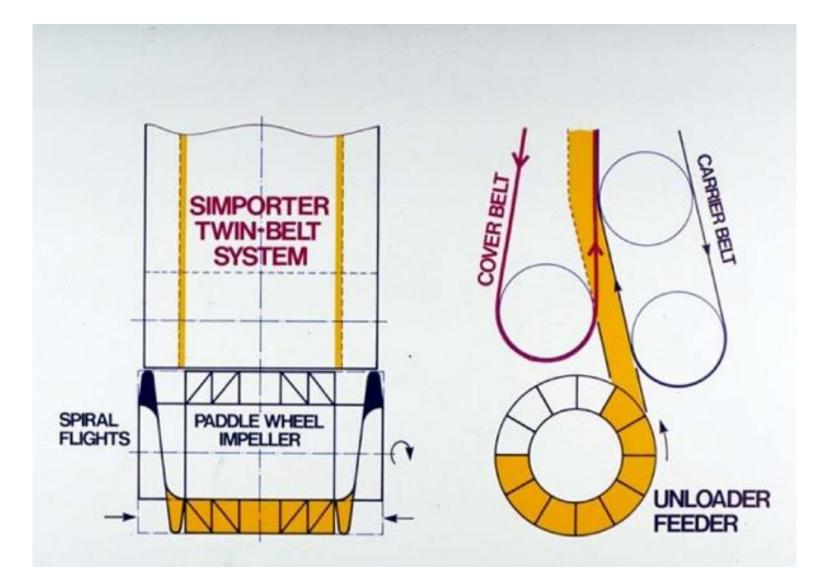




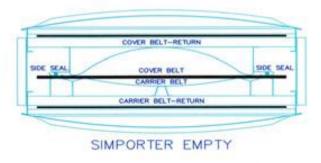
### Adjustable "foot" on bucket elevator CSU

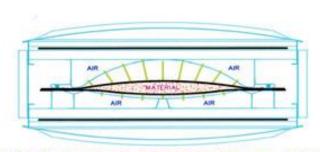



# Bucket elevator CSU


- Medium to high capacities – to 6000 tph or more
- Wide range of rates
- Good for cohesive cargoes
- Low to moderate product degradation

- High weight
- Dust containment not so good
- Damage from tramp material


# Blanket-belt CSU ("Simporter")


"Simporter" developed by Simon-Carves, sold to Vigan in 2007





#### SIMPORTER TWIN-BELT SYSTEM SECTIONS THROUGH AIRBOXES IN ELEVATOR LEG





SIMPORTER RUNNING AT INTERMEDIATE CAPACITY

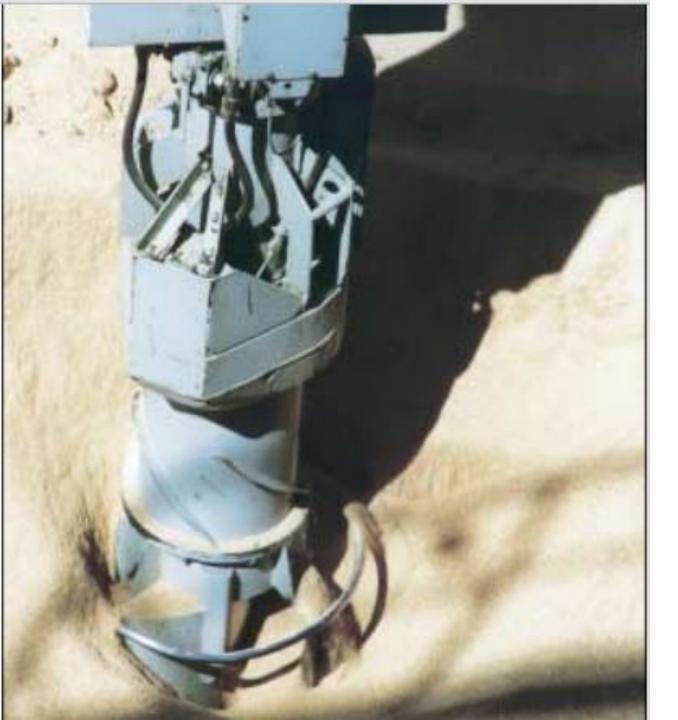


SIMPORTER RUNNING AT FULL CAPACITY








# Blanket-belt (sandwich belt) CSU

- Medium rates 500-1500 tph
- Theoretically, low maintenance
- Low degradation to cargo
- Low energy consumption (~40kW per 100tph)

- Depends on flow properties of cargo
  - Not good for extremely free flowing commodities
- Not popular

# **Pneumatic CSU**





# Feeder for cohesive cargoes



Mobile pneumatic CSU BRI LIN

# Pneumatic CSU

- Low weight on quayside
- Few moving parts low maintenance
- Excellent for dust containment
- Good for free flowing cargos
  - not for cohesive
    - Feeder can be added for slightly cohesive ones
- Small mobile units available

- Size limited mostly ~200 tph (rarely to 800 tph for favourable cargoes)
- Rate varies with luff and hoist position (reach and depth)
- Damage to coarse particles
  - More dust in material after unloading
  - Particularly during "clean up"
  - Increases dust emission further downstream
- High energy consumption, ~80 to 100kW per 100 tph

# Continuous Ship Unloader versus Crane, Grab and Hopper

#### CSU

- Limited range of bulk solids
- Specific to bulk density and flow properties
- Higher rates
  - At top end
  - For given machine size
- Less dependent on operator skill
- Lends itself to wireless control from ship-board
- Lead time often longer

### Grab Crane and hopper

- Use for both bulk and unit load
- Range of bulk solids
- Less damage from tramp material
- More spillage
- Lowest product degradation
- Easy to cope with wide range of bulk densities
- Dependent on operator skill and fatigue



The Wolfson Centre for Bulk Solids Handling Technology

Ship Unloading: Choice of Equipment

