

International Biomass Torrefaction and Carbonisation Council

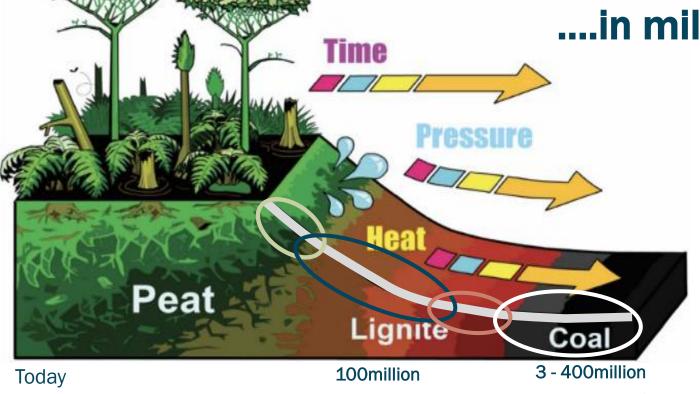
IBTC-COUNCIL.ORG

Members

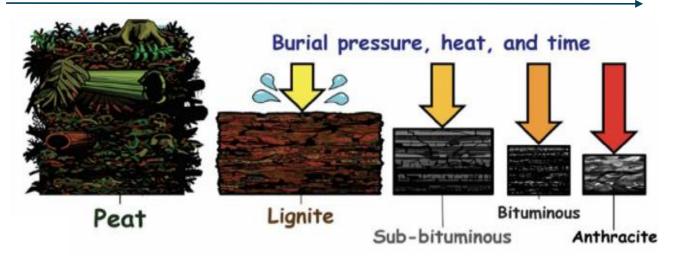


What we do with and for our members

- → Market promotion and networking
 - Initiating ISO standards and development commoditization products
- → Master permits and certification for handling, logistics and trade
- → Bridging science to industry
- → Member networking
- → Statistics and market analytics



Processes and Products


Coal is made of biomassin million of years

GCV

	kJ/kg	kcal/kg
Steam Explosion	17000	4057
Torrefaction	21000	5012
Pyrolyses	25000	5967
Carbonisation	29000	6921
= Charring	33000	7876

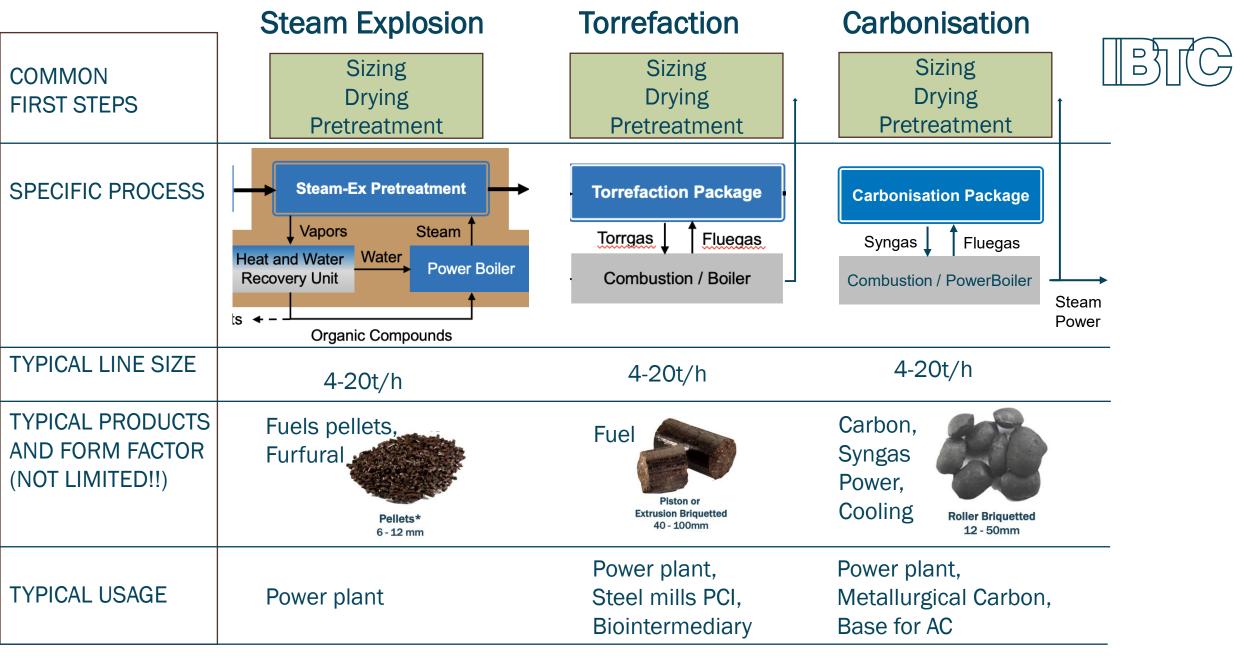
...or within minutes

by technology and temperature

6000 years of proven market success

- the product remains but production turns lossless

Traditional batch process 20 days



Continuous process 1-60 minutes

In traditional kilns 80% of the mass from feedstock is lost.

Modern Torrefaction/Carbonisation Technology is using every bit of energy fed into the process and optimizes M&E balance. Total and unavoidable losses <10%

^{*} HTC – Hydrothermal Carbonization a potential future industrial scale technology

Typical Product Form Factors for Trading

Pellets*
6 - 12 mm

Piston or Extrusion Briquetted 40 - 100mm

Agglomerated

Roller Briquetted 12 - 50mm

Terminology according to ISO working group (ISO TC 238 WG1):

Pyrogenic Biocarbon, the term for Biocarbon utilized in energy or for processes; **Biochar**, the term used for Biocarbon that is sequestered

^{*}Black pellets from steam explosion - Biocarbon pellets/briquettes from thermal processes

Biocarbon vs Coal: Parameters Reference

	CARBON
	LARRIN

		Steam Exploded	Torrefied Biomass		Bio-Carbon		Biochar
	Wood Pellet Pellets/Briquett	Steamcoal	Pellets/Briquettes	Metcoal	undensified		
Standard	ISO 17225-2	ISO 17225-8	ISO 17225-8		ISO WG		WBC cert
Moisture content (% wt)	7–10	3 – 8	2–8	10 - 12	3–8	10 - 12	30% rec
Ash Content (% wt)	0.3-1.5	0.3-3	1,5-5	1 - 10	1,5-8	<10	14 max
Calorific value NCV (MJ /kg)	16–17	19-21	19–23	20-25	25–32	27 - 31	
Volatiles (% db)	70–75	70	50-60	30 - 43	10–25	20 - 28	
Fixed carbon (% db)	20–25	20–25	25-50	37 - 49	60–95	50 - 60	>70
Bulk density (kg/m³)	650–680	700-750	650-700	700 - 1100	650-750	830–950	150-350
Energy density (GJ/m³)	10,4–11	15-16	13–17	15 - 21	18,2-24	22 - 28	
Dust	Average	Low	Average	Low	Low/Average	Low	High
Hydroscopic properties	Hydrophilic	Hydrophobic	Hydrophobic	Hydrophobic	Hydrophobic	Hydrophobic	
Biological degradation	Yes	slow	very low	very low	No	very low	No
Milling requirements	Classic/special	HGI 40-45	HGI 40-50	HGI 40 - 50	HGI 45-55	HGI 50 +	
Handling properties	Special/dry	Easy	Easy	Easy	Easy	Easy	with care
Transport costs	Average	Low	Low	Low	Low	Low	high
EPA PAH							6 g t-1 db
EFSA PAH							1 g t-1 db
PCB							0,2mg/kg db
H/Corg							< 0,7(< 0,4) db

Summarizing the Differences

BIOCOAL

Replacing fossil coal for heat generation and gasification

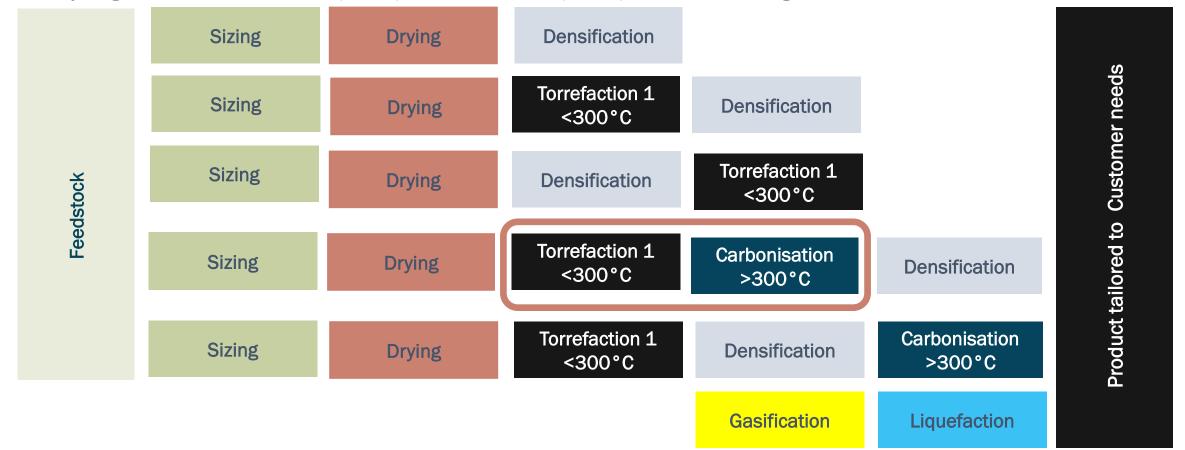
BIOCHAR

A sustainable solution for carbon sequestration

BIOCARBON

Decarbonizing the metallurgical industry

Fix C% 20-25% → 70% → 80-85+%


NCV (MJ/Kg) 19-20 → N.A. → 25-30+

dry basis

Lining up process steps in a biocarbon value chain

Basically, the value chain is built of up to 5 steps from gate of first processing installation to final delivered product. While it seems logic that first 3 steps are unavoidably located at place of feedstock origin it may be worthwhile analyzing if location of final steps at place of consumption provide advantages.

Challenges in shipping of Pyrogenic Biocarbon

Regulatory development challenges the transport of Biocarbon under IMO regulation

In a critical regulatory shift, the IMO has issued an amendment to the IMSBC Code, classifying carbon of animal or vegetable origin as dangerous goods, coming into force on January 1, 2026.

Under Amendment 42-24 to the IMDG Code, key changes include the removal of SP925 and SP223 from column 6 of the Dangerous Goods List for CARBON, animal or vegetable origin UN 1361, and the addition of the new SP978. This new special provision imposes stringent requirements, including disqualification from the UN N.4 self-heating exemption, mandatory weathering periods for unpackaged cargo, headroom requirements in CTUs, a 1.5m maximum stowage height, and a temperature cap at the time of packing. For CARBON, ACTIVATED UN 1362, SP925 and SP223 are similarly replaced by SP979, which stipulates conditions under which steam- or chemically activated carbon may be exempt from most Code provisions.

Source:

https://www.gov.uk/government/publications/min-715-m-cargoes-amendments-to-the-imsbc-code-07-23-and-imdg-code-42-24/min-715-m-carriage-of-cargoes-adoption-of-amendment-07-23-of-the-international-maritime-solid-bulk-cargoes-imsbc-code-and-amendment-42-24-of-the

What now?

- The amendment, poses a direct threat to the growth trajectory of pyrogenic biocarbon as an emergent commodity class.
- BUT the reason for this IMO decision lies in shipments that actually have nothing to
 do with Biocarbon for energy or industrial use, but mainly result from accidents
 involving shisha charcoal, which was itself often incorrectly declared.
- We understand that steam exploded and torrefied products are NOT under the Amendment 42-24!
- Developing a deeper understanding of safety criteria in production and testing, as well as defining standards is essential;
- and collaboration is needed to resolve uncertainties!

The Role of the IBTC

- Recognizing the urgency, the IBTC launched the "IMO Working Group" in December 2024 and assembled a Taskforce to work in direct collaboration with relevant authorities.
- Supporting the development of a new IMSBC code for biocarbon that allows for the continued legal, safe, and economically viable transport of the material at scale. But this will take years...
- Looking for short term solutions in collaboration with all parties along the value chain.

The IBTC formally invites all companies and institutions active across the Circular Biocarbon value chain to join this initiative!

Stakeholder participation is essential to co-create a sustainable and regulation-compliant future for Biocarbon logistics.

Way forward...

transitional / short term:

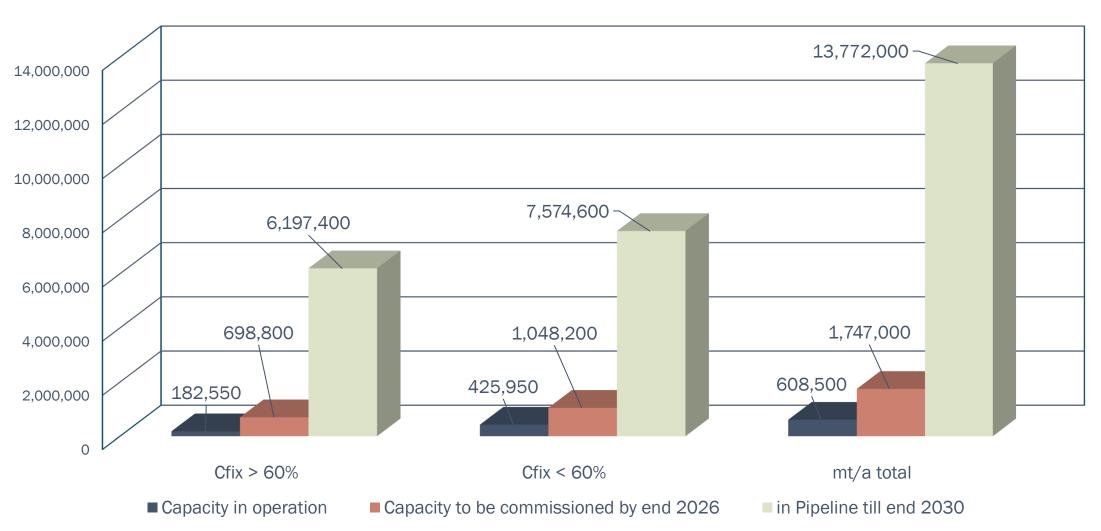
develop a standard format / manual for navigating for **tripartite agreements**

mid term:

create a data-driven case to **re-classify Biocoal** as non-dangerous under the IMSBC code, applying for re-coding of the existing IMSBC code for torrefied biomass (incl. steam exploded)

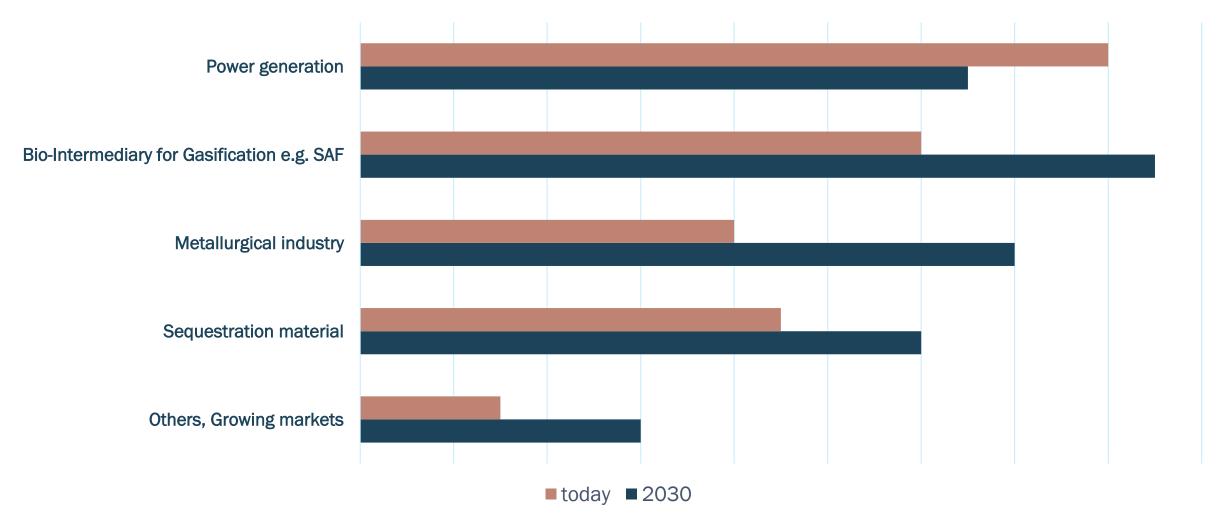
long term:

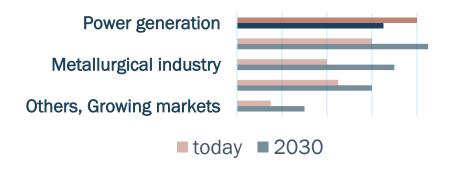
new IMSBC code for Biocarbon



Production Capacity – operating & outlook

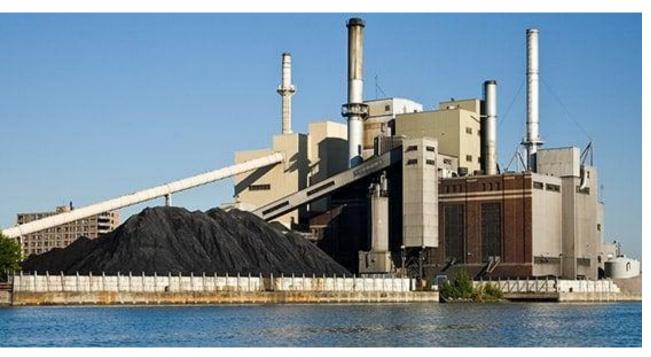
Capacity outlook mt/a


Capacity in operation, commissioned by end of 2026, in pipeline till 2030

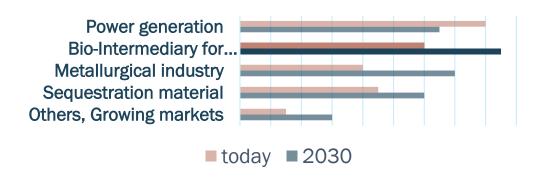


Which applications drive the volumes globally

trends as seen by producers and suppliers



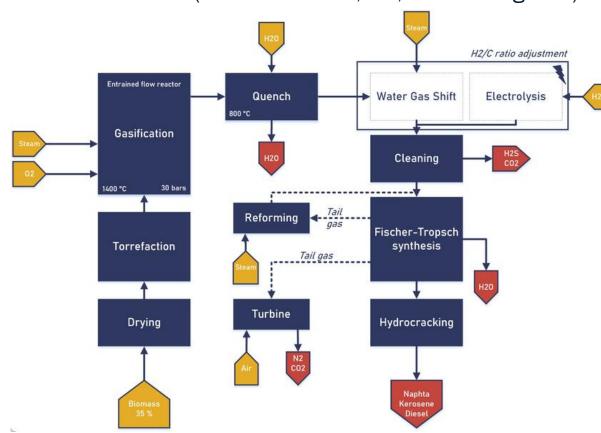
Co-firing Biocoal in coal power plants


selected examples of potential Japanese consumers

Cfix < 60%

RWE The energy to lead	NUON VATTENFALL 🍣	©F SVez ECN
ine energy to lead	VAITENFALL	W LCIV

JAPAN POWER STATION	Prefecture	Fuel	Present	When Available
Haramachi Thermal Power Station		Coal	biomass	
Hekinan	Aichi	Coal		biomass
Hitachinaka (常陸那珂火力発電所)	Ibaraki	Coal		biomass
Ishikawa	Okinawa	Coal		biomass
Kashima	Ibaraki	Coal		biomass
Kin	Okinawa	Coal		biomass
Maizuru (舞鶴発電所)	Kyoto	Coal	biomass	_
Matsuura	Saga	Coal		biomass
Misumi	Shimane	Coal		biomass
Nagoya Power Plant		Coal	biomass	
Naie (奈井江発電所)	Hokkaido	Coal		biomass
Nakoso	Fukushima	Coal	biomass	
Nanao Ohta Power Station		Coal	biomass	
Nanao-Ohta	Ishikawa	Coal	biomass	-
Niihamanishi (新居浜西火力発電所)	Ehime	Coal		biomass
Oozaki Power Station		Coal	biomass	
Reihoku (苓北発電所)	Kumamoto	Coal		biomass
Sakata	Yamagata	Coal	biomass	_
Sendai	Miyagi	Coal		biomass
Shin-Onoda Power Station		Coal	biomass	
Shinchi Thermal Power Station		Coal	biomass	
Sunagawa (砂川発電所)	Hokkaido	Coal		biomass
Taketoyo Thermal Power Station		Coal	biomass	
Tomato Atsuma	Hokkaido	Coal		biomass



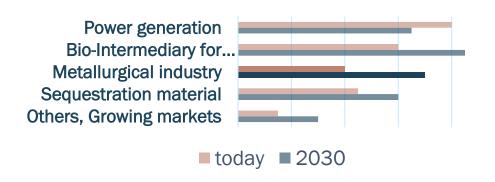
Biointermediary - Commoditisation

Feedstock for several processes

Gasification The torrefied biomass is gasified and converted into synthesis gas with significantly higher efficiency than raw biomass (a mixture of H2, CO, and other gases).

TORREFACTION INCREASE SAF, DME, Hydrogen, Ammonia, Biomethanol PRODUCTION EFFICENCY

Improved Feedstock Properties:


Torrefied biomass is the best suitable feedstock for gasification and other thermochemical conversion processes.

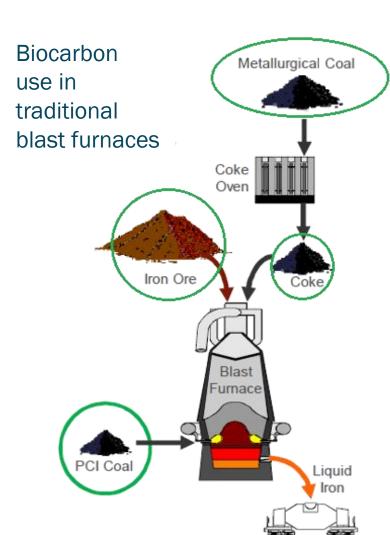
Low moister, very homogeneous, high energy density:

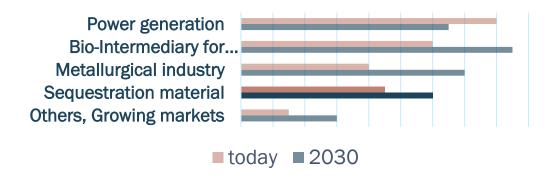
Low cost transport/storage, best LCA, homogeneous product from different pre-processors, more energy per m3 delivered, Increased catchment area for feedstock

Economies of scale:

This allows for economies of scale in FT or other end product processes

Metallurgical industry


Defossilisation in different application Cfix < 60% & > 60%



Some metallurgical sector companies active in	Biocarbon procurement and consumption
Arcelor Mital	Voest
Outokumpu	SSAB
Tata Steel	Eramet
Nucor	Vale
Nippon Steel	Tecnored
Thyssen Krupp	Elkem
Rio Tinto	Steel Dynamics

EAF furnaces Biocarbon Recycled steel

Biocarbon has the potential to play an important role in decarbonising the metallurgical industry in a wide range of applications as e.g. PCI, reductant material, coke replacement.

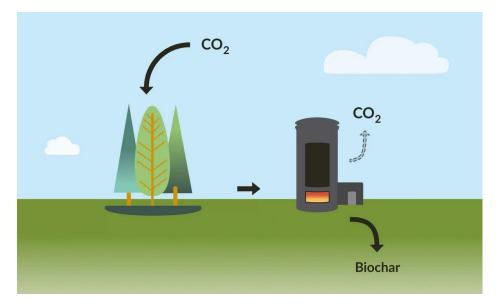
Sequestration

Carbon negative solutions

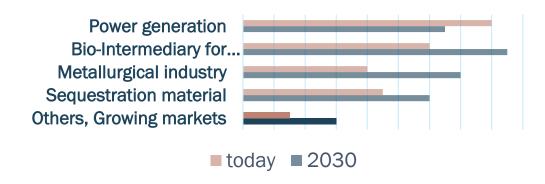
1. Capture

Plants take in CO_2 from the atmosphere.

2. Feedstock


Biomass, like wood chips typically used as fuel or left to decompose, is gathered.

3. Stabilization


Through pyrolysis, biomass is transformed into biochar, which locks carbon in a form that resists breaking down.

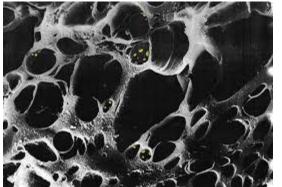
4. Storage

Biochar is applied back to the soil to enhance its fertility or incorporated into a matrix for carbon sequestration.

Niche markets growing fast

Technology on TRL 8 with numerous "niche" markets, significant value proposition and enormous potential

Graphite for battery anodes (biomass into anode-grade graphite) – replacing traditional fossil-based Carbon.


Process material / feedstock (reductant, plastics fillers, carbon black etc)

Activated carbon (eg. for the pharmaceutical industry, animal feed, water cleaning, AC)

Terminology & Specifications

Quality – Standardisation

ISO 17225 Solid biofuels – Fuel specifications and classes

ISO TS 17225 - 8: Graded thermally treated and densified biomass fuels

Different Feedstock and Classes

- 1. Wood biomass different classes
- 2. Herbaceous biomass
- 3. Fruit biomass
- 4. Aquatic biomass

Net Calorific Value, Durability, Bulk Density, Volatile Matter, Water sorption, Grindability etc.

ISO TC 238 "Solid Biofuels and Pyrogenic Biocarbon" is currently tensly inworking on the development of a Standard or Technical Specification for Pyrogenic Biocarbon to cover all products of Carbonization processes

					Liomass					
ISO/TS 17225-8:2016 Table 2 — Specification of graded per		1	ocessing 0	f non-woody	biomass					
ISO/TS 17225-8:2016	u -te produc	ed by thermal pr	OCESSIO		TA3					
accification of graded pe	ellers broad		TA2							
Table 2 — Specification	it	TA1	2. Herbaceous	2. Herb	aceous	\				
Property class, Analysis method Un		-cours biomass								
Normative	from agr	culture		ass 4. Aqu	atic biomass					
	horticult	ure and	4. Aquatic bio	Ollina						
ISO 17225-1 Table 1	2.2.1 By	from food and	\	1		'ellets prod	Uced L	IS	60/TS 17225-8:	
	herbace	ous processing	1	/		There	ou by ther	mal process.	7 17225-8:	2016
	industr	y, chemically sed herbaceous		\		IWIH	TW11	- ocessing o	f woody his	
	untrea	esticultur		1		1.1.1 Whole :		IS mal processing o TW2H TW2L	Joina:	SS
	3.1 Or	es chard and horticultur		1			ts without	110	TW3H	W3L
	fruit		1	\			awood a	1.1 Forest, plantation and other virgin wood 1.2 By-products	110	W3L
	resid	ues irom re-		/		1 Chami	residues	1.2 p., 544 Wood	and otherst, plants	ation
	proce	es from lood essing industry, lically untreated fruit	1	1		od by-prod	untreated p	rocees wood		
	resid	nically und	\	7 7 1 1	006 to D25, D	± 1; residues	a marci	1 2 4 - 6 industry		
	4. A	quatic biomass D06 to D25, D±1;		D25, D = 21	3,15 < L ≤ 4 (from D06 to	D10) D08 8	. 1		1 2 - "8 maush	270
	mm	D06 to 522,					10	3 15 D25, D ± 1;	untreated	. /
Diameter, D* and Length Lb		- no6 to D10)		5 < L ≤ 50 D12 to D25)	Grom D12 to	DEC	(fir	om Doc 40	D06 to D25, D ± 1;	<u>"</u>
180 17829	1	3,15 < L ≤ 50 (from D12 to D25)	(from	M10 ≤ 10	M10 ≤ 1		_ / 60	3,15 ≤ L ≤ 50	$3,15 \le L \le 40$ (from D06 to D10)	1
In accordance with Figure 1		M10 ≤ 10	\ .			M1	0 ≤ 10 (fro M08		$3,15 \le L \le 50$ (from D12)	
	w-% as received			10.0 ≤ 10,0	Value to be DU95.0 ≥	stated 95.0	/	≤8 M _{10≤10}		
Moisture, M ^c , ISO 18134-1, ISO 18134-2	wet basis	A5.0 ≤ 5,0	A	10.0 ≤ 10,6 U96.5 ≥ 96,5		0.00		1 1	M10 ≤ 10	1 📕
ISO 18134-1, 100	w-% dry	DU97.5 ≥ 97,5			F3.0 ≤	3,0	Dito	3.0 ≤ 3,0		
Ash, A, ISO 18122	w-% as received	F2.0 ≤ 2,0		F2.0 ≤ 2,0	Type and	amount F1.0 S	1.0	6.0 ≥ 96,0	A5.0 ≤ 5,0	
Mechanical dura	147.000		T	pe and amount	to be s	tated	F4.0 ≤ 4,0	D F2.0 ≤ 2,0 F6.0 ≤	55.0 ≥ 95.0	
ISO 17831-1 Fines, F d, ISO 18846	as received	Type and amou		to be stated Q17 ≥ 17 or		be sta		F6.0 ≤	6,0 F3.0 ≤ 3,0	
	w-% dry	to be stated Q18 ≥ 18 or		- 4 7 > A 7	Value to	be stated	ted Type and an			
Additives *	MJ/kg or	050350		r-lue to be stated	BD55	0 ≥ 550 £21,0	Oa > 21 o	ed Type and	d amount to be	
Net calorific value, Q,	kWh/kg as received	Value to be sta BD600 ≥ 60	10	BD900 = 000		be stated	$Q_d \ge 21.0$ $Q_d \ge 5.8$			
ren 18125	kg/m3			Value to be state	d Value to	5 ≤ 2,5	Value	Q _d ≥ 5,8	21,0	
Bulk density, BD, ISO 17828	as received	Value to be s	ateu	$N2.0 \le 2.0$	SO.	.3 ≤ 0,3	BD650 ≥ 0		Va < 5,8	
Bulk dem -	w-% dry w-% dry	N1.5 ≤ 1	5	S0.2 ≤ 0,2 Cl0.2 ≤ 0,2		0.3 ≤ 0,3 to be stated	ade to be s	tated BD550	0 be stated 0 ≥ 550	
Carbon, C, ISO 16948 Nitrogen, N, ISO 16948	w-% dry	S0.1 ≤ 0	,1	≤ 2			Value to be es	value to	De stated	
Nitrogen, N, 155 Sulfur, S, ISO 16994	w-% dry	≤ 2		≤1				Value to b		
Sulfur, S, ISO 16994 Chlorine, Cl, ISO 16994	mg/kg d mg/kg d	ry ≤ 1 ry ≤ 50		≤ 50 ≤ 20		e to be stated e to be stated	S0.05 ≤ 0,05 Cl0.05 ≤ 0,05			
Arsenic, As, 150 16968	mg/kg c	ry < 20		≤ 10			≤2			
Cadmium, Cr., ISO 16968 Chromium, Cr., ISO 16968	mg/kg	iry < 10)	< 0,1			≤1	Cl0.1 ≤ 0	1,1	
Chromium, Cf, 156 Copper, Cu, ISO 16968	mg/kg mg/kg	(O	1	≤ 10 ≤ 200	Valu	ue to be stated ue to be stated	≤15	52	\longrightarrow	
Lead, PB, 150 16968	mg/kg		00	Value to be			<u>≤20</u> ≤10	≤15	\longrightarrow	
	mg/kg	dry Value to	be stated			ould be stated	_≤0,1	≤20 ≤10	\rightarrow	
Nickel, NI, 150 Zinc, Zn, ISO 16968 Zinc, Zn, HSO 1811	23 w-%		be stated	Should be	stated		_≤10	≤ 0,1		
Zinc, Zn, ISO 16968 Volatile matter, VM, ISO 181	0	C Should	ue stare				≤100	≤10	\rightarrow	
Informative behaviour f,	1	POC DOS. D10, D2	5.	num length shal	l be ≤ 45 mm.		to be stated	Value ≤ 100	\rightarrow	
Volatile matter Informative Ash melting behaviour ^e , ISO 21404 Selected size of pelest to For D06 to D10 the amou As the point of delivery,	be stated. Examp	or than 40 mm can be	1 w-%. Maxii	and IS	0 18846.	t an additives like	stated 7	Value to be state	i	
a Selected size of pencer	nt of pellets long	erreened l	y hand accord	ding standard is to slagging inhib	itors or any o	ther address		To be stated		
For DOS to be be seen to felivery.	ines less than 3,	15 mm are screen	g, pressing aid	15, 31466	ature (DT), he	misphere	wmills durin	g production of clearly within		
Ash menting ISO 21404 Selected size of pellets to For Dot to D10 the amou At the point of delivery. At the point of delivery. Type of additives to add starch, corn flour, potat, All characteristic tempe	production, deliv	oil, lignin).	re (SST), defo	rmation temper	70	Mauri	Portets are		\dashv	
4 At the point of uct. • Type of additives to aid starch, corn flour, potate All characteristic tempe temperature (HT) and	o flour, vegetable catures (shrinka	ge starting temperatu	nditions shou	or comi	ned by L	Maximum length Ccording standard g aids, slagging inh	shall he	her additives like		
All characteristic tempe	low temperature	ge starting temper aco (FT) in oxidizing co (FT) in oxidizing co error racteristic temperatur ature (HT) and flow to	d (Q) results	oil, lignin).	n (e.g. pressin	ccording standard ccording standard g aids, slagging inh basis 21,00 MJ/kl kg (5,2 kWh/kg). cormation tempera ld be stated.	56 ≤ 45 mm	L.		
temperature (H1) and	temper	racteristic temperatur ature (HT) and flow te	es (share	oisture	ic value	aids, slagging inh	ibitora			
		and flow te	mperature (starting temp	1) is 18,65 kg	basis 21.00 be-	or any oth	her additives to		
			- MIG (F)	(1) in oxidizing co	ture (SST), def	kg (5,2 kWh/kg)	and moisture ~	ont-		
				-20	nultions shou	ld be stated	ture (Dr.	ontent (M) 8% is		
						aned.	J, hemis	ph		

Biocarbon Terminology

We have realized the big confusion in the field of processes and products in thermal upgrading of biomass and do want to offer a first attempt to provide a comprehensive list of definitions and delimitations synthesizing what we see as current understanding in the market.

The glossary will be updated regularly.

Get your free copy here:

https://www.ibtc-council.org/biocarbonterminology

Download your free copy of Biocarbon Terminology now and stay up to date with the latest industry terms and definitions!

Biocarbon Terminology

Shaping the Future of Circular Biocarbon.

Together.

Circular Biocarbon

An umbrella term proposed by IBTC: Circular biocarbon can be used as a generic term for all biomass-derived carbon products produced and utilized in a circular way from plant biomass.

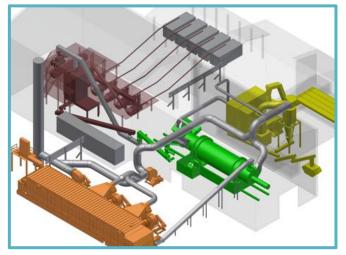
By the term may seem to be redundant at first glance, we propose the word "circular" not only to represent the carbon cycle that is closed in the short term when biomass is used, by absorbing the carbon released into the atmosphere by the next generation of plants through photosynthesis (dark reaction), but also to illustrate the clear focus to follow the principles of the circular economy. These include sustainable sourcing, sustainable and efficient processing, using all components of the resource, avoiding waste streams, with a focus on optimizing environmental, social, material and economic values achieved through the use of innovative practices and technologies.

Therefore the designation of a material as "circular biocarbon" is a clear extension of the term "pyrogenic biocarbon" used in the standards and confirms that this meets the compliance criteria of a regenerative circular economy.

A 6000 - year success story, continued...

...but NOT in such unsustainable way!

Optimizing the Mass- and Energy Balance at minimized material and energy waste –



The precondition for successful implementation

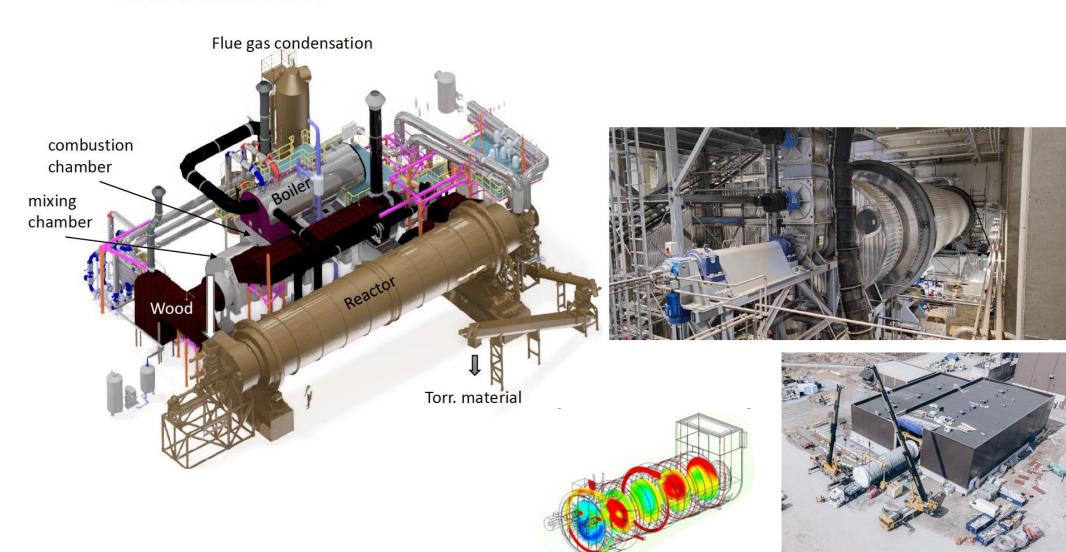
Examples on implemented production lines

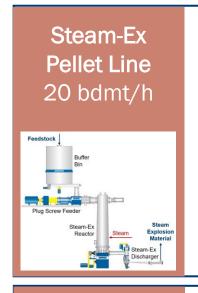
Selected Industrial Scale Biomass Plants - Joensuu Finland

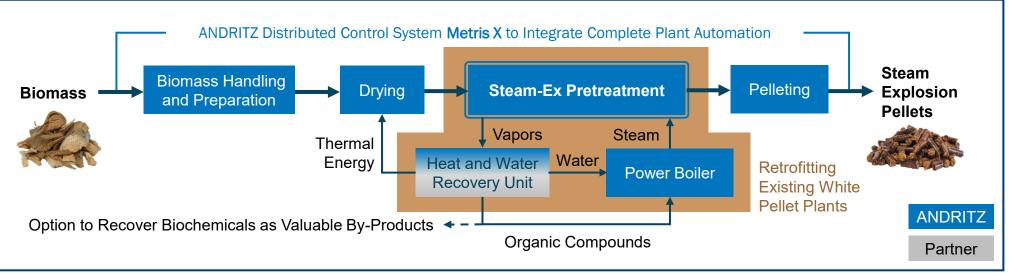
Largest Biocoal plant in Europe started operation in Q1/25

Plant transitioned from cold into hot commissioning while finalization work continued in parallel in Q1.

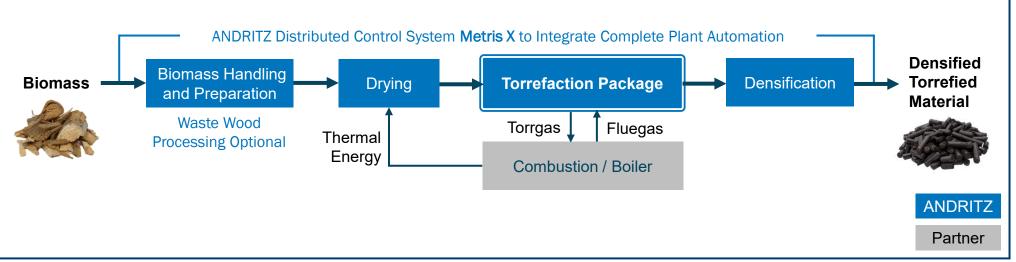
From Q2continuous production of a Biocoal briquette for power and the metallurgical industry.

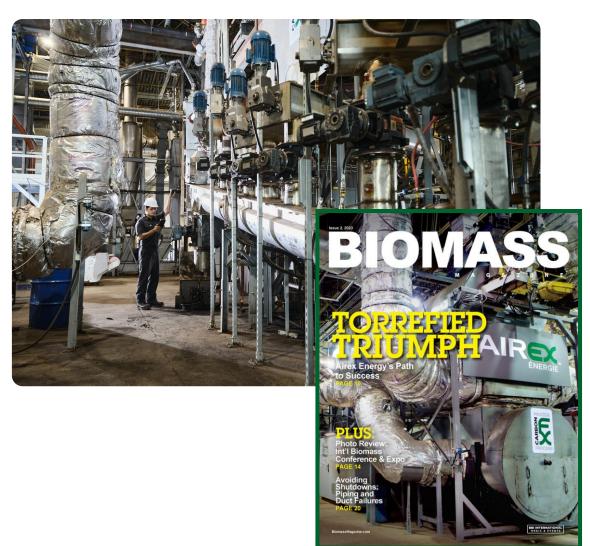

Capacity 60.000mt Biocoal per year made from forestry residues.



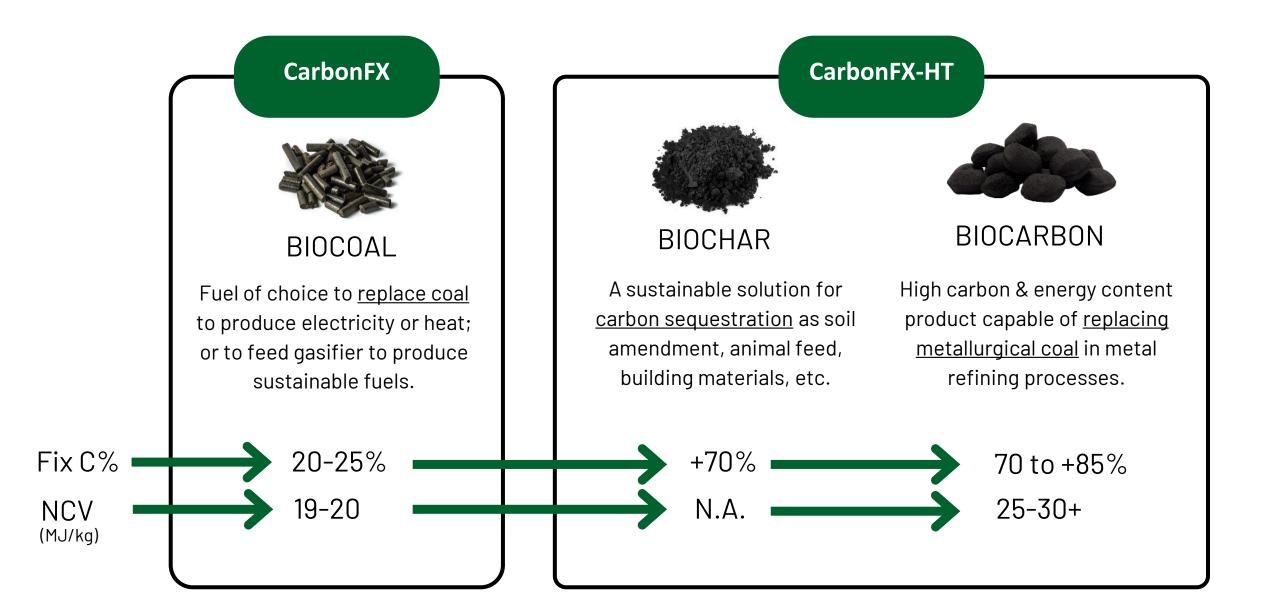


Torrefaction


ANDRITZ ADVANCED SOLID BIOFUEL TECHNOLOGIES



As an innovative leader in decarbonization solutions, Airex Energy is committed to empowering industries worldwide to reduce their greenhouse gas emissions and achieve their sustainability goals.


Using our proprietary technology, we convert biomass residues into 3 high-value products:

- 1. Biocoal
- 2.Biochar
- 3. Biocarbon

OUR TECHNOLOGIES COVER THE WHOLE CARBON SPECTRUM

PLANTS IN OPERATION

Biocoal Pellet Plant (Torrefaction technology)

Location: Bécancour, Québec, Canada

Capacity: 15,000 MT/yr Employees: 12

Status: In operation since 2016

Ownership: 100% Airex Energy

The first and only industrial-scale biocoal pellet plant in Canada.

Carbonity Plant (Carbonization technology)

Location: Port-Cartier, Québec, Canada

Capacity: 30,000 MT/yr

Status: In operation since Q1 2025

Ownership: Joint-Venture

The largest biochar/biocarbon plant in North America

Proprietary technology and process to maximize utilization of feedstock

Key milesones

Patented process

Unique black pellets - ArbaCore

Extraction of biochemicals

Regeneration of thermal energy

100% certified sustainable feedstock

INPUT

Sawdust

Steam

Electrical power

Water

OUTPUT

ArbaCore

Bio-chemicals

Treated waste water

ArbaOne

Source: Company information

ArbaCore is a superior coal substitute compared to white pellets

ArbaCore advantages over white pellets for coal replacement

Coal-fired power plants can switch to ArbaCore with minimal CAPEX compared to white pellets

Water resistant – can be stored outdoors

40% lower volume for same energy content → lower logistics costs

Safer handling

Outstanding mechanical properties

→ lower particle size distribution

Lower handling, storage and transport cost

→ can be handled similar to coal

ArbaCore has been successfully verified in 14 coal power plants

Product properties of Arbacore pellets

Physical parameters	Unit	Powerplant requirement	Result
Total moisture	Weight %	≤ 10 %	8.0%
Bulk density	kg/m3	≥ 700	730
Durability	Weight %	≥98,0%	98.9%
Net calorific value at constant pressure	GJ/t	≥ 18.2	18.891
	Kcal/kg	≥ 4,347	4,512
	MWh/t	≥ 5.05	5.246
Particle size distribution	≤ 3,15mm	≥97,0%	99.65%
	≤ 2,00mm	≥98,0%	98.75%
	≤ 1,00mm	≥65,0%	80.38%

ArbaOne production plant is certified under the Sustainable Biomass Program (SBP)

Regular shipments for large scale industrial customers

Eirik Haugen, CEO // contact: eirik.haugen@arbaflame.no

Aymium produces high-value BioCarbon and currently operates the largest advanced biocarbon facility in the world, located in Michigan. Aymium has been supplying customers globally from this plant since 2012.

Aymium, together with its partners, has developed a proven production process that is an important building block to help decarbonize industrial processes, like steel making, and power generation.

To date Aymium is developing and implementing Biomass Carbonisation projects in the **US and Canada in sizes 100-250.000t/a at the individual project.** Each project is implemented with an individual partner. Aymium is ready to go abroad

Aymium produces high-value biocarbon and biohydrogen products that can be used to immediately replace fossil fuels in the production of energy, metals, crops, and in the purification of water and air with no modifications to equipment or processes.

In conclusion

- Our products represent a 6000 years sucess story, now perfectly efficient produced
- Established processes with an optimized mass and energy balance with minimized material and energy waste
- Circular Biocarbon is the easiest pathway to substitute fossil carbon in all coal applications: power, processing, reduction, anode etc and can as well sequester atmospheric Carbon in permanent sinks
- Today mostly energy coal substitute. Growing consumption in processing industry and as intermediary product for higher processing like carbonization or liquefaction (SAF) close to market
- Numerous technology providers on market
- The Number of industrial size plants is rapidly growing (CAGR 67%)

Please address us

- to learn more about Circular Biocarbon
- to pre-discuss project ideas
- to be brought in touch with project developers and technology suppliers
- to join the Circular Biocarbon community
- and to create value from the just starting Circular Biocarbon revolution in energy & fossil carbon intense industries

Shaping the Future of Circular Biocarbon.

Together.

International Biomass
Torrefaction and
Carbonisation Council (IBTC)

c/o Renewable Energy Hub Franz-Josefs-Kai 13/8 1010 Vienna, Austria office@ibtc-council.org IBTC-council.org

Registered Association in Austria: ZVR no: 1663191542
UID no: ATU78774756

Michael Wild, MSC michael@ibtc-council.org +43 676 6117622

Tom Sieverts
tom@ibtc-council.org
+49 172 4026972

Lisa Schmidt, MBA
lisa@ibtc-council.org

+43 699 17144890